Spline Approximation Operators of Bernstein-Schoenberg Type in One and Two Variables

T. N. T. Goodman
Department of Mathematics. The Unirersity. Dundee DDI $4 H N$. Scotland
AND)
S. L. LeE
School of Mathematical Sciences. Science Unicersity of Malaysia, Penang, Malaysia
Communicated by Carl de Boor

Received October 27. 1980

1. Introduction

In |13|, Schoenberg introduced the spline operators

$$
\begin{equation*}
V_{k}(f: \cdot)=\sum_{i}^{n} f\left(\xi_{i}\right) N\left(\cdot \mid t_{i}, \ldots, t_{i+k}\right) \tag{1.1}
\end{equation*}
$$

which reproduce linear functions and are variation-diminishing. They also have the shape-preserving properties of Bernstein polynomials to which they reduce with appropriate choice of knots $\left(t_{i}\right)$. The approximation properties of these operators were further investigated by Marsden and Schoenberg |9| and Marsden |10|.

More recently C . de Boor $|1|$ highlighted the geometric interpretation of B-splines due to Curry and Schoenberg $|3|$ and extended this to give a definition of B-splines in higher dimensions. Subsequently C. A. Micchelli $|11|$ and W. Dahmen $|5|$ obtained some analytic properties of these B splines together with some recurrence relations. In |4| Dahmen constructed a class of these B-splines whose linear span contains all polynomials of appropriate degree.

In this paper we shall use the geometric definition of B-splines to construct spline approximation operators of type (1.1) in one and two dimensions. In the case of one dimension we allow different orderings of the knots for the B splines in (1.1). The main tool will be a generalisation of an identity of

Marsden [10] which we prove in one dimension in Section 2 and in two dimensions in Section 5. In $|4|$ Dahmen has given a different generalisation of Marsden's identity and our proof is similar to his, both using elementary geometrical methods. Our identities differ from Dahmen's in using a triangulation of a simplex rather than a cube, and producing a single identity involving 2 parameters (in 2 dimensions) rather than a class of identities involving a single parameter. These allow us, in the one- and twodimensional cases considered, to find simple, explicit formulas for the B spline coefficients in the identities.

In Section 3 we study the variation-diminishing property of the operators in one dimension, while in Sections 4 and 6 we prove convergence results for the operators in one and two dimensions, respectively. These operators reduce to Bernstein polynomials when restricted to a triangular domain with appropriate choice of triangulation, as is shown in Section 7. An important feature of these spline operators is that they are defined on any polygonal domain in $n t^{2}$ and not restricted to triangles or squares.

2. A Geometric Proof of a Generalised Marsdens Identity

We first introduce the B-splines defined in $|1|$. For $0<s \leqslant k$. and δ a k simplex in R^{k}, we define

$$
\begin{equation*}
M_{\delta}(x):=\operatorname{vol}_{k-s}(\{v \in \delta: p v=x\}), \quad \forall x \in\left[u^{s}\right. \tag{2.1}
\end{equation*}
$$

where vol_{d} means d-dimensional volume, and $p:\left\|₹^{k} \rightarrow\right\|<$ denotes the projection $p v:=\left(v_{i}\right)_{i=1}^{s}$. Then M_{δ} is a piecewise polynomial function of degree $\leqslant k-s$ with compact support in \mathbb{R}^{s}. If δ has vertices v^{v}, \ldots, v^{k} and $x^{i}=p v^{i}$, then it is known $\left\{5,11 \mid\right.$ that $M_{\delta}(x) /$ vol $_{k} \delta$ depends only on $x^{0} \ldots . . . x^{k}$ and so we can define the B-spline

$$
\begin{equation*}
M\left(x \mid x^{\prime \prime}, \ldots, x^{k}\right):=M_{\delta}(x) / \operatorname{vol}_{k} \delta, \quad \forall x \in \|: s \tag{2.2}
\end{equation*}
$$

Now take $k>1$ and let A_{k-1} denote the standard $(k-1)$-simplex in $\prod_{?}^{k} 1$ with vertices the standard vectors

$$
\begin{equation*}
e^{i}:=\left(\delta_{i j}\right)_{j=1}^{k-1}, \quad i=0, \ldots, k-1 \tag{2.3}
\end{equation*}
$$

Let $\Delta=\left\{\delta_{i}\right\}_{i=1}^{n}$ be a triangulation of $|0,1| \times \Delta_{k-1} \subset F_{i}{ }^{k}$ such that each vertex lies on one of the edges $\mathcal{F}_{j}=\left\{\left(x, e^{j}\right): x \in[0,1]\right\}, j=0, \ldots, k-1$. For $i=1, \ldots, n$, we denote the vertices of δ_{i} by $v^{i 0}, \ldots, v^{i k}$ and their projection on the x_{1}-axis by $t_{i 0}, \ldots, t_{i k}$. Note that for any simplex δ_{i}, each edge F_{i}. $j=0 \ldots ., k-1$, contains at least one of the vertices of δ_{i} and hence there is
exactly one such edge containing exactly two vertices of δ_{i}. We shall denote these two vertices by $v^{i 0}$ and $v^{i k}$, where $t_{i 0}<t_{i k}$.

Now for $i=1, \ldots, n$ we define a normalised B-spline of degree $k-1$ on $|0,1|$ by

$$
\begin{equation*}
N_{i}:=(k-1)!M_{\delta_{i}} . \tag{2.4}
\end{equation*}
$$

We wish to calculate $\operatorname{vol}_{k} \delta_{i}$. If $v^{i \prime}$ and $v^{i k}$ lie on \vec{F}_{1}, then $\operatorname{vol}_{k} \delta_{i}$ is the absolute value of

$$
\frac{1}{k!}\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
v_{1}^{i 0} & v_{1}^{i 1} & \cdots & v_{1}^{i k} \\
\vdots & \vdots & & \vdots \\
v_{k}^{i 0} & v_{k}^{i 1} & \cdots & v_{k}^{i k}
\end{array}\right|
$$

which, after reordering $v^{i 1}, \ldots . \iota^{i t k}$ ' 1 if necessary, equals the absolute value of

$$
\frac{1}{k!}\left|\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & \cdots & 1 \\
t_{i 0} & t_{i k} & t_{i 1} & t_{i 2} & t_{i 2} & \cdots & t_{i(k} \\
11 \\
1 & 1 & 0 & 0 & 0 & & \\
& & & 1 & 0 & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right|
$$

Thus

$$
\begin{equation*}
\operatorname{vol}_{k} \dot{\delta}_{i}=\frac{1}{k!}\left(t_{i k}-t_{i 11}\right) \tag{2.5}
\end{equation*}
$$

A similar calculation shows that (2.5) also holds when $v^{i \prime}, v^{i k}$ lie on \vec{F}_{i} : $j \neq 1$. Then by (2.2), (2.4), (2.5),

$$
\begin{equation*}
N_{i}=\frac{1}{k}\left(t_{i k}-t_{i 0}\right) M\left(\cdot \mid t_{i 0}, \ldots, t_{i k}\right) . \tag{2.6}
\end{equation*}
$$

Thus N_{i} depends only on $t_{i 0}, \ldots, t_{i k}$, and we may write

$$
N_{i}=N\left(\cdot \mid t_{i 0}, \ldots, t_{i k}\right) .
$$

We have the following generalisation of Marsden's identity.

Theorem 2.1. For any $y \in \mathbb{R}$ and $0 \leqslant x \leqslant 1$,

$$
\begin{equation*}
(y-x)^{k-1}=\bigvee_{i=1}^{n}\left\{\left.\right|_{j=1} ^{k-1}\left(y-t_{i j}\right)\right\} N_{i}(x) . \tag{2.7}
\end{equation*}
$$

Proof. Take any $y>1$ and let A_{k}^{k} denote the k-simplex in ∇^{k} with vertices $\left(y, e^{0}\right),\left(0, e^{i}\right), i=0, \ldots, k-1$. Let $P:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in A_{k}^{y}: 0 \leqslant x_{1} \leqslant 1\right\}$. A simple geometric argument shows $P=\left\{T_{y} v: v \in[0,1] \times \Delta_{k-1}\right\}$, where for $(x, z) \in|0,1| \times \Delta_{k-1}, \quad T_{y}(x, z)=(x,(y-x) z / y)$. For $i=1, \ldots, n$, let δ_{i}^{y} denote the simplex $\left|T_{y} v^{i 0}, \ldots, T_{y} v^{i k}\right|$, where $|T|$ denotes the convex hull of the set T. Then $\Delta^{y}:=\left\{\delta_{i}^{y}\right\}_{i-1}^{n}$ is a triangulation of P. By a calculation similar to that for (2.5).

$$
\begin{equation*}
\operatorname{vol}_{k} \delta_{i}^{y}=\left.\frac{1}{k!}\left(t_{i k}-t_{i 0}\right)\right|_{j-1} ^{k-1}\left(\frac{y-t_{i j}}{y}\right) . \tag{2.8}
\end{equation*}
$$

Now for each x in $[0,1]$, the hyperplane $\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}=x\right\}$ intersects P in the $(k-1)$-simplex σ_{x} with vertices $T_{y}\left(x, e^{j}\right), j=0, \ldots, k-1$. Then

$$
\begin{align*}
\frac{1}{(k-1)!}\left(\frac{y-x}{y}\right)^{k-1} & =\operatorname{vol}_{k-1} \sigma_{x} \\
& =\bigvee_{i-1}^{n} M_{\delta_{i}}(x) \quad \text { by } \quad(2.1) \\
& =\bigvee_{i=1}^{n} \operatorname{vol}_{k} \delta_{i}^{y} M\left(x \mid t_{i 0}, \ldots, t_{i k}\right) \quad \text { by } \quad(\tag{2.2}\\
& =\sum_{i=1}^{n} \frac{1}{(k-1)!}\left\{\prod_{j=1}^{k-1}\left(\frac{y-t_{i j}}{y}\right)\right\} N_{i}(x) \tag{2.6}
\end{align*}
$$

which gives (2.7).
Corollary. For $k>2$ and $i=1, \ldots, n$ let

$$
\begin{align*}
\xi_{i} & =\frac{1}{k-1} \frac{k-1}{j-1} t_{i j} \tag{2.9}\\
\xi_{i}^{(2)} & =\frac{2}{(k-1)(k-2)} \grave{V}_{0<m<n} t_{i l} t_{i m} . \tag{2.10}
\end{align*}
$$

Then for all x in $|0,1|$,

$$
\begin{equation*}
1=\sum_{i=1}^{n} N_{i}(x) \tag{2.11}
\end{equation*}
$$

$$
\begin{align*}
x & =\sum_{i}^{n} \xi_{i} N_{i}(x) \tag{2.12}\\
x^{2} & =\grave{-i}_{i_{1}}^{n} \xi_{i}^{(2)} N_{i}(x) \tag{2.13}
\end{align*}
$$

Proof. In (2.7) equate coefficients of $y^{k-1}, y^{k} 3^{2}, y^{k}{ }^{3}$, respectively.
Remark. Suppose $0=t_{1}=\cdots=t_{k}<t_{k+1} \leqslant \cdots \leqslant t_{n}<t_{n+1}=\cdots=$ $t_{n+k}=1$, and for $i=1, \ldots, n, t_{i}=\cdots=t_{i, j} \Rightarrow j<k$. Then the following triangulation Δ gives rise to the usual B-splines of Curry and Schoenberg $|3|$ and the usual Marsden's identity $|10|$:

$$
\begin{aligned}
& \delta_{1}=\left|\left(t_{1}, e^{l}\right),\left(t_{2}, e^{1}\right), \ldots,\left(t_{k}, e^{k}\right),\left(t_{1+k}, e^{i}\right)\right| . \\
& \delta_{2}=\left|\left(t_{2}, e^{l}\right),\left(t_{3}, e^{2}\right) \ldots,\left(t_{1+k}, e^{0}\right),\left(t_{2+k}, e^{1}\right)\right| . \\
& \vdots \\
& \delta_{n}=\left|\left(t_{n}, e^{l}\right),\left(t_{n+1}, e^{l+1}\right), \ldots,\left(t_{n+k}, e^{l}\right)\right|,
\end{aligned}
$$

where $l \equiv n-1(\bmod k)$.
We shall refer to this triangulation as the usual triangulation. In this case the normalised B-splines are

$$
N_{i}=N\left(\cdot \mid t_{i}, \ldots, t_{i+h}\right), \quad i=1, \ldots, n .
$$

3. The Variation-Diminishing Property of Bernstein-Schoenberg Operators

For $k>1$ define a triangulation $\Delta=\left\{\delta_{i}\right\}_{i=1}^{n}$ as in Section 2 and for $i=1, \ldots, n$, define N_{i}, ξ_{i} as in (2.6), (2.9). Then we define the following spline operator V_{A}, which we call a Bernstein-Schoenberg operator.

For any function f on $|0,1|$.

$$
\begin{equation*}
V_{د}(f ; x):=\stackrel{V}{i}_{1}^{n} f\left(\xi_{i}\right) N_{i}(x) . \quad \forall x \in|0,1| . \tag{3.1}
\end{equation*}
$$

If Δ is the usual triangulation, V_{s} reduces to the operator V_{k} of Schoenberg (1.1). Clearly V_{A} is a positive linear operator. It follows from (2.11) and (2.12) that V_{Δ} reproduces polynomials of degree 1.

An important property of the operators V_{k} is that they are variation diminishing, i.e., for any f,

$$
\begin{equation*}
S \quad\left(V_{k}(f ; \cdot)\right) \leqslant S \quad(f) . \tag{3.2}
\end{equation*}
$$

where S denotes the number of strong sign changes in $|0.1|$. see $|2.13|$.

For a general triangulation Δ, the operator V_{Δ} need not be variationdiminishing as the following example shows. Let $k=2$ and define $\Delta=\left\{\delta_{i}\right\}_{i-1}^{4}$ by

$$
\begin{aligned}
\delta_{1} & =\left|(0,0),(0,1),\left(\frac{5}{8}, 0\right)\right|, \\
\delta_{2} & =\left|(0,1),\left(\frac{5}{8}, 0\right),\left(\frac{3}{8}, 1\right)\right|, \\
\delta_{3} & =\left|\left(\frac{5}{8}, 0\right),\left(\frac{3}{8}, 1\right),(1,0)\right|, \\
\delta_{4} & =\left|\left(\frac{3}{8}, 1\right),(1,0),(1,1)\right| .
\end{aligned}
$$

If f is any function with $S(f)=1, f(0)=f\left(\frac{3}{8}\right)=1, f\left(\frac{5}{8}\right)=f(1)=-1$. then it is easily seen that $S^{-}\left(V_{j}(f)\right)=3$.

However we do have the following result.
Theorem 3.1. Let $A=\left\{\delta_{i}\right\}_{i}^{n}$, be a triangulation of $|0,1| \times A_{k-1}$ satisfying

$$
\begin{equation*}
t_{i j} \leqslant t_{i k}, \quad j=0, \ldots, k, \quad i=1, \ldots, n, \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{i 0} \leqslant t_{i j}, \quad j=0, \ldots, k, \quad i=1, \ldots, n \tag{3.4}
\end{equation*}
$$

Then V_{Δ} is variation-diminishing.
We note that this includes the case V_{k} because Δ is the usual triangulation if and only if

$$
t_{i 0} \leqslant t_{i j} \leqslant t_{i k}, \quad j=0, \ldots, k, \quad i=1, \ldots, n
$$

The proof of Theorem 3.1 requires some subsidiary results and first we order the simplices of Δ as follows (without yet imposing conditions (3.3) or (3.4)). Let δ_{1} be the unique simplex containing the $(k-1)$-face $\{0\} \times \Delta_{k-1}$. There is then a unique simplex having a common $(k-1)$-face with δ_{1} and this simplex is denoted by δ_{2}. Continuing in this manner, suppose for some $1<i<n$ we have defined $\delta_{1}, \ldots, \delta_{i}$ so that for $j=1, \ldots, i-1, \delta_{j}$ and δ_{j+1} have a common $(k-1)$-face. Then there are precisely two simplices having a common $(k-1)$-face with δ_{i}. One of these is $\delta_{i, 1}$ and the other we denote by δ_{i+1}. This gives a unique ordering of Δ and δ_{n} is the unique simplex containing the $(k-1)$-face $\{1\} \times A_{k} \quad$.

Throughout the rest of this section we assume Δ has this ordering. We note that for $i=2, \ldots, n, \delta_{i}$ contains precisely one vertex, namely, $v_{i k}$, not contained in any $\delta_{j}, j<i$. Thus the total number of vertices is $(k+1)+(n-1)=n+k$. We denote the projections of these vertices on $|0,1|$ by $\mathbf{t}=\left\{t_{i}\right\}_{i=1}^{n+k}$, where $t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{n+k}$. Clearly $t_{1}=\cdots=t_{k}=0$, $t_{n+1}=\cdots=t_{n+k}=1$ and if for any $i, t_{i}=\cdots=t_{i+j}$, then $j<k$. The usual B -
splines $M\left(\cdot \mid t_{i}, \ldots, t_{i+k}\right), i=1, \ldots, n$, thus form a basis for the space $\nrightarrow(t)$ of all splines on $\left[0,1 \mid\right.$ with knots in t. Hence the B-splines N_{1}, \ldots, N_{n} form a basis for.$f(t)$ if and only if they are linearly independently. They are not linearly independent in general as is seen by the following example.

Let $k=2$ and define $\Delta=\left\{\delta_{i}\right\}_{i-1}^{4}$ by

$$
\begin{aligned}
& \delta_{1}=\left|(0,0),(0,1),\left(\frac{1}{2}, 0\right)\right|, \\
& \delta_{2}=\left\{\left(\frac{1}{2}, 0\right),(0,1),(1,0) \mid,\right. \\
& \delta_{3}=\left\{(0,1),(1,0),\left(\frac{1}{2}, 1\right)\right], \\
& \delta_{4}=\left|\left(\frac{1}{2}, 1\right),(1,0),(1,1)\right| .
\end{aligned}
$$

Then, clearly $N_{2}=N_{3}$.
However, we do have the following result.
Proposition 3.1. Suppose the triangulation Δ is such that all vertices projected onto the same point on $[0,1]$ lie in a common simplex in Δ. Then N_{1}, \ldots, N_{n} are linearly independent.

Proof. For $i=1, \ldots, n$ we shall prove by induction that N_{1}, \ldots, N_{i} are linearly independent. Suppose then that for some $1<i \leqslant n, N_{1} \ldots . . N_{i}$, are linearly independent. Let S denote the set of vertices of $\delta_{1}, \ldots, \delta_{i}$ whose projections on $|0,1|$ equal $t_{i k}$. By assumption S comprises vertices of a common simplex, say, δ_{j}. We cannot have $j<i$ since $v_{i k} \in S$ and $v_{i k} \notin \delta_{j}$ for $j<i$. But if any element of S lies in δ_{j} for $j>i$, then it also lies in δ_{i}, by the nature of the ordering of Δ. Thus S must comprise vertices of δ_{i}.

Let r denote the cardinality of S and suppose that for some numbers $\lambda_{1} \ldots . . \lambda_{i}, \quad f:=\lambda_{1} N_{1}+\cdots \lambda_{i} N_{i}=0$. Then $0=f^{(k \cdot r)}\left(t_{i k}\right)-f^{(k-r)}\left(t_{i k}\right)=$ $\lambda_{i}\left\{N_{i}^{(k-r)}\left(t_{i k}^{+}\right)-N_{i}^{(k-r)}\left(t_{i k}\right)\right\}$ and hence $\lambda_{i}=0$. So $\lambda_{1} N_{1}+\cdots+\lambda_{i, 1} N_{i, 1}=0$ and since $N_{1} \ldots, N_{i-1}$ are linearly independent, $\lambda_{1}=\cdots=\lambda_{i-1}=0$. Thus $N_{1} \ldots ., N_{i}$ are linearly independent and the inductive step is complete.

Corollary. If 4 satisfies (3.3) or (3.4), then N_{1}, \ldots, N_{n} are linearly independent.

Proof. First note that for $i=1, \ldots, n \cdots 1$ the $(k-1)$-face in common to δ_{i} and δ_{i+1} is given by $\left\{v_{i j}: j=1 \ldots, k\right\}$ and $\left\{v_{i+1 j}: j=0, \ldots, k-1\right\}$. We now suppose A satisfies (3.3) (the case (3.4) following similarly) and note that (3.3) is equivalent to the condition $t_{1 k} \leqslant t_{2 k} \leqslant \cdots \leqslant t_{n k}$.

Let S denote a set of vertices having the same projection on $|0,1|$. We have to show the elements of S lie in a common simplex. If the projection is 0 . then clearly $S \subset \delta_{1}$. Otherwise S is of the form $\left\{v_{i k}: \alpha \leqslant i \leqslant \beta\right\}$ for some $1 \leqslant \alpha \leqslant \beta \leqslant n$. We shall show by induction on j that for $\alpha \leqslant j \leqslant \beta$. $\left\{v_{i k}\right.$: $\alpha \leqslant i \leqslant j\} \subset \delta_{j}$. This is trivially true for $j=\alpha$. Suppose it is true for some j.
$\alpha \leqslant j<\beta$. Then every element of $\left\{v_{i k}: \alpha \leqslant i \leqslant j\right\}$ is of the form $v_{j l}$ for some l. and since the projection of $v_{j l}$ on $[0,1]$ is $t_{j k}>t_{j 0}$, we must have $l>0$, and hence $v_{j l} \in \delta_{j+1}$. So $\left\{v_{i k}: \alpha \leqslant i \leqslant j \leqslant j+1\right\} \subset \delta_{j+1}$ and by induction $S=\left\{v_{i k}: \alpha \leqslant i \leqslant \beta\right\} \subset \delta_{\beta}$.

Henceforth in this section we assume Δ satisfies (3.3) or (3.4). We will prove the results for case (3.3), case (3.4) following similarly.

Lemma 3.1. For any p, q with $1 \leqslant p \leqslant p+q-1 \leqslant n$, and for any points $\tau_{1}<\cdots<\tau_{q}$ in $|0,1|, \operatorname{det}\left(N_{p-1+i}\left(\tau_{j}\right)\right)_{i, j=1}^{q} \geqslant 0$.

Proof. The proof is by induction on q and follows the ideas of de Boor $|2|$. Clearly the result is true for $q=1$. Take $1<r \leqslant n$ and suppose it is true for $q=r-1$. Now choose any p with $1 \leqslant p \leqslant p+r-1 \leqslant n$ and points $\tau_{1}<\cdots<\tau_{r}$ in $|0,1|$. We must show $\operatorname{det}\left(N_{p-1+i}\left(\tau_{j}\right)\right)_{i, j}^{r} \quad 1 \geqslant 0$.

By an earlier argument we know $\delta_{p}, \ldots, \delta_{p+r-1}$ have a total of $r+k$ distinct vertices. Denote the projections of these vertices on $|0,1|$ by $s=\left\{s_{i}\right\}_{i}^{r} 1_{1}^{k}$. where $s_{1} \leqslant \cdots \leqslant s_{r+k}$, and let $\mathcal{(s)}$ denote the space spanned by $M_{i}:=$ $M\left(\cdot \mid s_{i}, \ldots, s_{i+k}\right), \quad i=1, \ldots, r$. By the corollary to Proposition 3.1, $N_{p} \ldots ., N_{p, r}$, are linearly independent and so form a basis for \boldsymbol{f} (s). It is well-known (see $|1|$) that $\operatorname{det}\left(M_{i}\left(\tau_{j}\right)\right)_{i, j, 1}^{r} \neq 0$ iff $s_{i}<\tau_{i}<s_{i+k}, i=1, \ldots, r$. We may assume $\operatorname{det}\left(N_{p, i+i}\left(\tau_{j}\right)\right)_{i, j-1}^{r} \neq 0$ and hence that $s_{i}<\tau_{1}<s_{i, k}$. $i=1, \ldots . r$. It follows that $\operatorname{det}\left(M_{i}\left(\tau_{j}\right)\right)_{i, j}^{r}{ }^{\prime} \neq 0$ and since $N_{p}, \ldots, N_{p, r}$: span the same space as $M_{1} \ldots . M_{r}$, we have by the induction hypothesis, $\operatorname{det}\left(N_{p}, \quad, i\left(\tau_{j}\right)\right)_{i, j, 1}^{r}>0$.

Now for x in $|0,1|$ define $f(x)=\operatorname{det}\left(N_{p, 1+i}\left(\hat{\tau}_{j}\right)\right)_{i, j, 1}^{r}$, where $\hat{\tau}_{j}=\tau_{j}$, $j=1, \ldots, r-1$, and $\hat{\tau}_{r}=x$. Then f is a linear combination of N_{p}, \ldots, N_{p+r-1}. If s_{r+k} has multiplicity α in \mathbf{s}, then $N_{p+r-1}^{(k-\alpha)}\left(s_{r+k}^{-}\right) \neq 0$ and $N_{i}^{(k-\alpha)}\left(s_{r+k}^{-}\right)=0$ for $p \leqslant i<p+r-1$. Thus in $\left(s_{r+k}-\varepsilon, s_{r+k}\right)$ for small enough $\varepsilon>0 . f$ is dominated by the term involving N_{p+r-1} and so for x in $\left(s_{r+k}-\varepsilon, s_{r, k}\right), f(x)$ has the same sign as the coefficient of N_{p+r}, namely, $\operatorname{det}\left(N_{n}{ }_{i+i}\left(\tau_{j}\right)\right)_{i, j-1}^{r-1}>0$. But $f(x)$ cannot vanish or change sign for x in $\left.\mid \tau_{r}, s_{r+k}\right)$ and so $f\left(\tau_{r}\right)>0$, i.e., $\operatorname{det}\left(N_{p, i+i}\left(\tau_{j}\right)\right)_{i, j \quad 1}^{r}>0$.

Lemma 3.2. For any points $\tau_{1}<\cdots<\tau_{n}$ in $|0,1|$, the matrix $\left\|N_{i}\left(\tau_{j}\right)\right\|_{i, j}^{n}$ is totally positive.

Proof. This follows from Lemma 3.1 by applying the method of Karlin |6, p. 528|.

Proof of Theorem 3.1. It follows easily from (3.3) or (3.4) that $\xi_{1} \leqslant \xi_{2} \leqslant \cdots \leqslant \xi_{n}$. But it is known [6] that for any totally positive matrix A and any vector x (of appropriate length), the vector $A x$ has no more sign changes than does x. The result then follows immediately from Lemma 3.2.

4. Convergence of Bernstein-Schoenberg Operators

In this section we assume $k>2$. In $\left[10 \mid\right.$ Marsden showed that $V_{k}(f ; \cdot) \rightarrow f$ uniformly on $|0,1|$ for all f in $C|0,1|$ if $k^{-1}\left(\max \Delta t_{i}\right) \rightarrow 0$. We now generalise this result to the operators V_{A}.

Theorem 4.1. For every f in $C|0,1|, V_{d}(f ; \cdot) \rightarrow f$ uniformly on $|0,1|$ if $(1 / k) \max _{1<i<n} d_{i} \rightarrow 0$, where $d_{i}=\max _{j} t_{i j}-\min _{j} t_{i j}$.

Proof. Define g in $C|0,1|$ by $g(x)=x^{2}$. Since V_{Δ} is a positive linear operator which reproduces polynomials of degree 1, it follows from the Bohman-Korovkin Theorem (see $|7|$) that $V_{\Delta}(f ; \cdot) \rightarrow f$ uniformly on $\left.\mid 0,1\right]$ for all f in $C|0,1|$ if $V_{A}(g: \cdot) \rightarrow g$ uniformly on $|0,1|$.

Now from (3.1) and (2.13) we have

$$
\begin{equation*}
V_{\Delta}(g ; x)-g(x)=\grave{i}_{i=1}^{n}\left(\xi_{i}^{2}-\xi_{i}^{(2)}\right) N_{i}(x) . \tag{4.1}
\end{equation*}
$$

A straightforward calculation shows that for $i=1, \ldots, n$,

$$
\xi_{i}^{2}-\xi_{i}^{(2)}=\frac{1}{(k-1)^{2}(k-2)} \underset{0<1<m<k}{ }\left(t_{i m}-t_{i i}\right)^{2}
$$

and thus $0 \leqslant \xi_{i}^{2}-\xi_{i}^{(2)} \leqslant d_{i}^{2} / 2(k-1)$.
So by (4.1) and (2.11) we have

$$
0 \leqslant V_{\Delta}(g ; x)-g(x) \leqslant \frac{1}{2(k-1)} \max _{1 \leqslant i \leqslant n} d_{i}^{2}, \quad \forall x \in|0,1| .
$$

Hence $V_{\Delta}(g ; \cdot) \rightarrow g$ uniformly on $|0,1|$ if $1 / k \max _{1<i \sim n} d_{i} \rightarrow 0$.
Defining $t=\left\{t_{i}\right\}_{i=1}^{n+k}$ as in Section 3, the conclusion of Theorem 4.1 need not be valid if we merely assume $k^{-1}\left(\max _{i} \Delta t_{i}\right) \rightarrow 0$. As a counterexample let $k=3$ and take any points $0=t_{1}=t_{2}=t_{3}<t_{4}<\cdots<t_{n+1}=t_{n+2}=t_{n+3}=1$. Define $\Delta=\left\{\delta_{i}\right\}_{i-1}^{n}$ by

$$
\begin{aligned}
& \delta_{i}=\left|\left(t_{i+2}, 0,0\right),\left(t_{1}, 1,0\right),\left(t_{2}, 0,1\right),\left(t_{i, 3}, 0,0\right)\right|, \\
& i=1, \ldots, n-2, \\
& \delta_{n}=\left|\left(t_{1}, 1,0\right),\left(t_{2}, 0,1\right),\left(t_{n+1}, 0,0\right),\left(t_{n+2}, 1,0\right)\right|, \\
& \delta_{n}=\left|\left(t_{2}, 0,1\right),\left(t_{n+1}, 0,0\right),\left(t_{n+3}, 1,0\right),\left(t_{n+3}, 0,1\right)\right| .
\end{aligned}
$$

Then $\xi_{i}=0, i=1,2, \ldots, n-2, \xi_{n-1}=\frac{1}{2}, \xi_{n}=1$, and it is easy to see that for $g(x)=x^{2}, V_{A}(g ; \cdot) \rightarrow g$ on $|0,1|$ as $\max \Delta t_{i} \rightarrow 0$.

5. Two-Dimensional Marsden's Identity

For $k>2$ let Ω denote a polygon in \mathbb{R}^{2} and Δ_{k-2} the standard $(k-2)$ simplex in \mathbb{R}^{k-2} with vertices e^{0}, \ldots, e^{k-2} as in (2.3). Let $\Delta=\left\{\delta_{i}\right\}_{i}^{n}$, be a triangulation of $\Omega \times A_{k-2} \subset \mathbb{R}^{k}$ such that each vertex lies on one of the faces $\mathcal{F}_{j}=\left\{\left(x, e^{j}\right): x \in \Omega\right\}, j=0, \ldots, k-2$. For $i=1, \ldots, n$ we write $\delta_{i}=\left\{v^{i 0}, \ldots, v^{i k} \mid\right.$ as before and denote the projection of $v^{i j}$ on Ω by $x^{i j}=\left(x_{1}^{i j}, x_{2}^{i j}\right)$.

Now for any simplex δ_{i}, each face $, \mathcal{F}, j=0, \ldots, k-2$, contains at least one of the vertices of δ_{i} and hence there are two possibilities.
(i) There is one face containing three vertices of δ_{i}, In this case we denote these vertices by $v^{i 0}, v^{i 1}, v^{i 2}$.
(ii) There are two faces, each containing exactly two vertices of δ_{i}, In this case we denote those on one face by $v^{i 0}, v^{i 1}$ and those on the other face by $v^{i 2}, v^{i 3}$.

Now for $i=1, \ldots, n$ we define a normalised B-spline of degree $k-2$ on Ω by

$$
\begin{equation*}
N_{i}:=(k-2)!M_{\delta_{i}} \tag{5.I}
\end{equation*}
$$

By a calculation similar to that for (2.5), we find the following.
In case (i), $\operatorname{vol}_{k} \delta_{i}=\left|\operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 2}-x^{i 0}\right)\right| / k!$.
In case (ii), $\operatorname{vol}_{k} \delta_{i}=\left|\operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 3}-x^{i 2}\right)\right| / k!$.
Thus by (5.1) and (2.2) we have the following.
In case (i),

$$
\begin{equation*}
N_{i}=\frac{1}{k(k-1)}\left|\operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 2}-x^{i 0}\right)\right| M\left(\cdot \mid x^{i 0}, \ldots, x^{i k}\right) \tag{5.2}
\end{equation*}
$$

In case (ii),

$$
\begin{equation*}
N_{i}=\frac{1}{k(k-1)}\left|\operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 3}-x^{i 2}\right)\right| M\left(\cdot \mid x^{i 0}, \ldots, x^{i k}\right) \tag{5.3}
\end{equation*}
$$

Now for $i=1, \ldots, n, j=3, \ldots, k$, we define $z^{i j}$ in \mathbb{F}^{2} as follows. If case (ii) holds for δ_{i}, then $z^{i 3}$ is the point of intersection of the line $x^{i 0} x^{i 1}$ and the line $x^{i 2} x^{i 3}$. (These lines cannot be parallel or δ_{i} would be degenerate.) In all other cases $z^{i j}=x^{i j}$. Then we have the following two-dimensional version of Marsden's identity.

Theorem 5.1. For any $y \in \mathbb{F}^{2}$ and $x \in \Omega$,

$$
\begin{equation*}
\left(y_{1} y_{2}-y_{2} x_{1}-y_{1} x_{2}\right)^{k-2}=\grave{i}_{i=1}^{n}\left\{\prod_{j-3}^{k}\left(y_{1} y_{2}-y_{2} z_{1}^{i j}-y_{1} z_{2}^{i j}\right)\right\} N_{i}(x) \tag{5.4}
\end{equation*}
$$

Proof. Without loss of generality we may assume $\Omega \subset\left\{x \in \mathbb{R}^{2}\right.$: $\left.x_{1}, x_{2} \geqslant 0\right\}$. For $y_{1}, y \geqslant 1$ we let A_{k}^{v} denote the k-simplex in $\left.\Pi\right\}^{k}$ with vertices $\left(y_{1}, 0, e^{0}\right),\left(0, y_{2}, e^{0}\right),\left(0,0, e^{i}\right), i=0, \ldots, k-2$. For large enough y_{1}, y_{2}, A_{k}^{y} contains $\Omega \times\left\{e^{0}\right\}$ and we let $P:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \Delta_{k}^{y}:\left(x_{1}, x_{2}\right) \in \Omega\right\}$. A simple geometric argument shows that $P=\left\{T_{y} v: v \in \Omega \times \Delta_{k-2}\right\}$, where for $(x, z) \in \Omega \times \Delta_{k-2}$,

$$
T_{y}(x, z)=\left(x,\left(1-\frac{x_{1}}{y_{1}}-\frac{x_{2}}{y_{2}}\right) z\right) .
$$

If $\dot{\delta}_{i}^{Y}$ denotes the simplex $\left|T_{y} v^{i 0}, \ldots, T_{y} v^{i k}\right| . i=1, \ldots, n$. then for large enough $y_{1}, y_{2}, \Delta^{y}:=\left\{\delta_{i}^{y}\right\}_{i=1}^{n}$, is a triangulation of P.

Now for $i=1, \ldots, n$,

$$
\operatorname{vol}_{k} \delta_{1}^{y}=\frac{1}{k!}\left|\operatorname{det}\left(\begin{array}{ccc}
T_{y} v^{i 0} & \cdots & T_{y} v^{i k} \tag{5.5}\\
1 & \cdots & 1
\end{array}\right)\right| .
$$

First suppose δ_{i} satisfies (i). If $v^{i 0} \notin, F_{0}$, let $v^{i l}$ denote the vertex of δ_{i} lying in. \bar{F}_{0}. A simplification of (5.5) then gives

$$
\operatorname{vol}_{k} \delta_{i}^{r}=\left.\frac{1}{k!}\left|\operatorname{det}\left(\begin{array}{cccc}
x^{i 0} & x^{i 1} & x^{i 2} & x^{i l} \tag{5.6}\\
\alpha_{i 0} & \alpha_{i 1} & \alpha_{i 2} & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\right|\right|_{2 \leqslant i \leqslant k} \alpha_{i j},
$$

where $a_{i j}=1-x_{1}^{i j} / y_{1}-x_{2}^{i j} / y_{2}$.
By manipulating the rows of the determinant in (5.6) we get

$$
\operatorname{vol}_{k} \delta_{i}^{y}=\left.\frac{1}{k!}\left|\operatorname{det}\left(\begin{array}{ccc}
x^{i 0} & x^{i 1} & x^{i 2} \tag{5.7}\\
1 & 1 & 1
\end{array}\right)\right|\right|_{i} ^{k} a_{i j}
$$

If $v^{i 0} \in, \overrightarrow{F_{0}}$, then a simpler calculation also gives (5.7).
Next suppose δ_{i} satisfies (ii). If $v^{i 0}, v^{i 2} \notin \bar{F}_{0}$, then as before let $v^{i /}$ denote the vertex of δ_{i} lying in \mathcal{F}_{0}. A simplification of (5.5) then gives

$$
\operatorname{vol}_{k} \delta_{i}^{\cdot}=\frac{1}{k!}\left|\operatorname{det}\left(\begin{array}{ccccc}
x^{i 0} & x^{i 1} & x^{i 2} & x^{i 3} & x^{i l} \\
\alpha_{i 0} & \alpha_{i 1} & 0 & 0 & 0 \\
0 & 0 & \alpha_{i 2} & \alpha_{i 3} & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\right| \underset{\substack{\begin{subarray}{c}{\leqslant j<j \\
j \neq i} }}\end{subarray}}{ } \alpha_{i j}
$$

and a manipulation of rows gives

$$
\operatorname{vol}_{k} \delta_{i}^{y}=\frac{1}{k!}\left|\operatorname{det}\left(\begin{array}{cccc}
x^{i 0} & x^{i 1} & x^{i 2} & x^{i 3} \tag{5.8}\\
\alpha_{i 0} & \alpha_{i 1} & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\right| \prod_{k-4}^{k} \alpha_{i j} .
$$

Now recall that $z^{i 3}$ is the point of intersection of the line $x^{i 0} x^{i 1}$ with the line $x^{i 2} x^{i 3}$ and so

$$
z^{i 3}=\frac{x^{i 1} \operatorname{det}\left(\begin{array}{ccc}
x^{i 0} & x^{i 2} & x^{i 3} \tag{5.9}\\
1 & 1 & 1
\end{array}\right)-x^{i 0} \operatorname{det}\left(\begin{array}{ccc}
x^{i 1} & x^{i 2} & x^{i 3} \\
1 & 1 & 1
\end{array}\right)}{\operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 3}-x^{i 2}\right)}
$$

Then expanding the determinant in (5.8) by its third row and applying (5.9) gives

$$
\begin{equation*}
\operatorname{vol}_{k} \delta_{i}^{y}=\frac{1}{k!} \operatorname{det}\left(x^{i 1}-x^{i 0} x^{i 3}-x^{i 2}\right)\left(1-\frac{z_{1}^{i 3}}{y_{1}}-\frac{z_{2}^{i 3}}{y_{2}}\right) \prod_{j=4}^{k} \alpha_{i j} \tag{5.10}
\end{equation*}
$$

If $v^{i 0} \in \mathscr{F}_{0}$ or $v^{i 2} \in \mathscr{F}_{0}$, a simpler calculation also gives (5.10).
Now for each x in Ω, the hyperplane $\left\{\left(x_{1}, \ldots, x_{k}\right):\left(x_{1}, x_{2}\right)=x\right\}$ intersects P in the $(k-2)$-simplex σ_{x} with vertices $T_{y}\left(x, e^{j}\right), j=0, \ldots, k-2$. Then

$$
\frac{1}{(k-2)!}\left(1-\frac{x_{1}}{y_{1}}-\frac{x^{2}}{y_{2}}\right)^{k-i}=\operatorname{vol}_{k-2} \sigma_{x}
$$

$$
=\bigvee_{i-1}^{n} M_{\delta_{i}}(x) \quad \text { by }
$$

$$
=\bigvee_{i=1}^{n} \operatorname{vol}_{k} \delta_{i}^{y} M\left(x \mid x^{i 0}, \ldots, x^{i k}\right) \quad \text { for (2.2) }
$$

$$
\begin{equation*}
=\grave{i}_{i=1}^{n} \frac{1}{(k-2)!}\left\{\left.\right|_{j=3} ^{k}\left(1-\frac{z_{1}^{i j}}{y_{1}}-\frac{z_{2}^{i j}}{y_{2}}\right)\right\} N_{i}(x) \tag{5.2}
\end{equation*}
$$

which gives (5.4).
Corollary. For $k>3$ and $i=1, \ldots, n$, let

$$
\begin{align*}
\xi_{i j} & =\frac{1}{k-2} \frac{\grave{L}^{k}}{1-3} z_{j}^{i l}, \quad j=1,2, \tag{5.11}\\
\xi_{i j}^{(2)} & =\frac{2}{(k-2)(k-3)} \sum_{3 \leqslant 1<m \leqslant k} z_{j}^{i l} z_{j}^{i m}, \quad j=1,2, \tag{5.12}\\
\xi_{i}^{(2)} & =\frac{1}{(k-2)(k-3)} \sum_{3 \leqslant 1 \neq m \leqslant k} z_{1}^{i l} z_{2}^{i m} . \tag{5.13}
\end{align*}
$$

Then for all x in Ω,

$$
\begin{align*}
1 & =\grave{V}_{i-1}^{n} N_{i}(x) \tag{5.14}\\
x_{j} & =\grave{i}_{i=1}^{n} \xi_{i j} N_{i}(x), \quad j=1,2 \tag{5.15}\\
x_{i}^{2} & =\grave{i}_{i=1}^{n} \xi_{i j}^{(2)} N_{i}(x), \quad j=1,2 \tag{5.16}\\
x_{1} x_{2} & =\sum_{i=1}^{n} \xi_{i}^{(2)} N_{i}(x) \tag{5.17}
\end{align*}
$$

Proof. In (5.4) equate coefficients of $y_{1}^{k-2} y_{2}^{k}{ }^{2}, y_{1}^{k-3} y_{2}^{k-2}, y_{1}^{k} y_{2}^{k}{ }^{3}$, $y_{1}^{k-4} y_{2}^{k-2}, y_{1}^{k-2} y_{2}^{k}, y_{1}^{k-3} y_{2}^{k-3}$, respectively.

6. Two-Dimensional Bernstein-Schoenberg Operators

As in Section 5 we take a polygon Ω and for $k>2$ define a triangulation $\Delta=\left\{\delta_{i}\right\}_{i=1}^{n}$. For $i=1, \ldots, n$ define N_{i} by (5.2), (5.3) and $\xi_{i}=\left(\xi_{i 1}, \xi_{i 2}\right)$ where $\xi_{i 1}, \xi_{i 2}$ are defined by (5.11). Then we define the Bernstein-Schoenberg operator V_{\perp} as follows.

For any function f on Ω,

$$
\begin{equation*}
V_{\Delta}(f ; x)=\bigvee_{i=1}^{n} f\left(\xi_{i}\right) N_{i}(x), \quad \forall x \in \Omega \tag{6.1}
\end{equation*}
$$

Clearly V_{d} is a positive linear operator. It follows from (5.14) and (5.15) that V_{Δ} reproduces polynomials of degree 1 . We now assume $k>3$ and give a two-dimensional version of Theorem 4.1.

Theorem 6.1. Suppose that for each triangulation 4 and for each simplex $\delta_{i} \in A$ satisfying (ii) of Section 5, the line $x^{i 0} x^{i 1}$ and the line $x^{i 2} x^{i 3}$ intersect in $\operatorname{supp} N_{i}$. Then for every $f \in C(\Omega), V_{\Delta}(f: \cdot) \rightarrow f$ uniformly on Ω if $(1 / k) \max _{1 \leqslant i \leqslant n} d_{i} \rightarrow 0$, where $d_{i}=\operatorname{diam}\left(\operatorname{supp} N_{i}\right)$.

Proof. By the Bohman-Korovkin Theorem, it is sufficient to show that $V_{\Delta}(f ; \cdot) \rightarrow f$ uniformly on Ω for $f=g_{1}, g_{2}$ and h, where $g_{1}(x)=x_{1}^{2}$, $g_{2}(x)=x_{2}^{2}$ and $h(x)=x_{1} x_{2}$.

Now from (6.1) and (5.16) we have for $j=1,2$

$$
\begin{equation*}
V_{\Delta}\left(g_{j} ; x\right)-g_{i}(x)=\frac{v_{i}^{\prime}}{i}\left(\xi_{i j}^{2}-\xi_{i j}^{(2)}\right) N_{i}(x) . \tag{6.2}
\end{equation*}
$$

A straightforward calculation shows that for $i=1, \ldots, n$.

$$
\xi_{i j}^{2}-\xi_{i j}^{(2)}=\frac{1}{(k-2)^{2}(k-3)} \vdots_{3 \leqslant 1<m<k}\left(z_{j}^{i m}-z_{j}^{i j}\right)^{2}
$$

and thus $0 \leqslant \xi_{j}^{2}-\xi_{i j}^{(2)} \leqslant d_{i}^{2} / 2(k-2)$.
So by (6.2) and (5.14) we have

$$
0 \leqslant V_{\Delta}\left(g_{j} ; x\right)-g_{j}(x) \leqslant \frac{1}{2(k-2)} \max _{1 \leqslant i \leqslant n} d_{i}^{2}, \quad \forall x \in \Omega
$$

Also from (6.1) and (5.17) we have

$$
\begin{equation*}
V_{\Delta}(h ; x)-h(x)=\grave{v}_{i=1}^{n}\left(\xi_{i 1} \xi_{i 2}-\xi_{i}^{(2)}\right) N_{i}(x) . \tag{6.3}
\end{equation*}
$$

Now a straightforward calculation shows that for $i=1, \ldots, n$,
and thus $\left|\xi_{i 1} \xi_{i 2}-\xi_{i}^{(2)}\right| \leqslant K d_{i} /(k-2)$, where K depends only on Ω.
So by (6.3) and (5.14) we have

$$
\left|V_{\Delta}(h ; x)-h(x)\right| \leqslant \frac{K}{k-2} \max _{1 \leqslant i \leqslant n} d_{i}
$$

Hence $V_{\Delta}(h ; \cdot) \rightarrow h$ uniformly on Ω if $(1 / k) \max _{1 \leqslant i \leqslant n} d_{i} \rightarrow 0$.

7. Bernstein Polynomials

Let $x^{0}=(0,0), x^{1}=(1,0), x^{2}=(0,1)$ and Ω be the triangle $\left[x^{0}, x^{1}, x^{2}\right]$. For $k>2$ we define a triangulation

$$
\begin{aligned}
\Delta= & \left\{\delta_{i j}: i, j \geqslant 0, i+j \leqslant k-2\right\} \quad \text { of } \Omega \times \Delta_{k-2} \text { by } \\
\delta_{i j}= & {\left[\left(1,0, e^{0}\right),\left(1,0, e^{1}\right), \ldots,\left(1,0, e^{i}\right),\left(0,1, e^{i}\right)\right.} \\
& \left(0,1, e^{i+1}\right), \ldots,\left(0,1, e^{i+j}\right),\left(0,0, e^{i+j}\right),\left(0,0, e^{i+i+1}\right), \\
& \ldots,\left(0,0, e^{k-2}\right) \mid .
\end{aligned}
$$

By (5.2) and (5.3), the normalised B-spline corresponding to the simplex $\delta_{i j}$ is given by

$$
\begin{equation*}
N_{i j}=\frac{1}{k(k-1)} M\left(\cdot \left\lvert\, \frac{x^{0}, \ldots, x^{0}}{k-1-i}\right., x^{1}, \ldots, x^{1}, x_{i+1}^{2}, \ldots, x^{2}\right) . \tag{7.1}
\end{equation*}
$$

Now it follows from a formula of Micchelli (Corollary 2 of |12|) that

$$
\begin{align*}
& M(\cdot \mid \underset{k=1}{x_{j}^{0}, \ldots, x^{0}}, \underbrace{x^{1}, \ldots, x^{1}}_{i+1} \cdot{\underset{x}{2}, \ldots, x^{2}}_{j+1}^{k!} \\
& \quad=\frac{k!}{(k-2-i-j)!i!j!} x_{1}^{i} x_{2}^{j}\left(1-x_{1}-x_{2}\right)^{k-i j} . \tag{7.2}
\end{align*}
$$

So by (7.1), (7.2) and (6.1), the Bernstein-Schoenberg operator is given by

$$
\begin{align*}
v_{\Delta}(f ; x)= & \bigcup_{\substack{i, j>0 \\
i+j \leqslant k-2}} f\left(\frac{i}{k-2} \cdot \frac{j}{k-2}\right)\binom{k-2}{i}\binom{k-2-i}{j} \\
& \times x_{1}^{i} x_{2}^{j}\left(1-x_{1}-x_{2}\right)^{k} 2 i j \tag{7.3}
\end{align*}
$$

and therefore comprises Bernstein polynomials (see $|8|$).

Acknowledgments

We are grateful to Professor de Boor for many suggestions for the improvement of the paper. The second-named author also wishes to thank Professors A. Sharma and W. Dahmen for useful discussions concerning multivariate B-splines during his visit to the University of Alberta. Edmonton. December 1979 to March 1980.

References

1. C. De Boor. Splines as linear combinations of B-splines, in "Approximation Theory, II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 1-47, Academic Press. New York, 1976.
2. C. DF Boor. Total Positivity of the spline collocation matrix, Indiana Unix. J. Math. 25 (1976), 541-551.
3. H. B. Curry and 1. J. Schoenbirg. On Polya frequency function. IV. The fundamental spline functions and their limits. J. Analyse Math. 17 (1966). 71-107.
4. W. Dahmen. Polynomials as linear combinations of multivariate B-splines, Math. Z. 169 (1979). 93-98.
5. W. Dahmen. On multivariate B-splines, SIAM J. Numer. Anal. 17 (1980), 179-191.
6. S. Karlin. "Total Positivity." Standford Univ. Press, Stanford, Calif., 1968.
7. P. P. Korovkin. "Linear Operators and Approximation Theory," Hindustan Publishing Corp. 1960. |English translation |
8. G. G. Lorentz. Bernstein polynomials. in "Mathematical Expositions No. 8." Univ. of Toronto Press. Toronto. 1953.
9. M. J. Marsidin and I. J. Schoenberg, On variation diminishing spline approximation methods. Mathematica (Cluj) 8 (1966), 61-82.
10. M. J. Marsden. An identity for spline functions with applications to variation diminishing spline approximation. J. Approx. Theory 3 (1970), 7-49.
11. C. A. Micchelli, "A Constructive Approach to Kergin Interpolation in il: ${ }^{\text {k }}$: Multivariate B-Splines and Lagrange Interpolation." MRC Tech. Summary Report \#1895, 1978. Univ. of Wisconsin, Madison.
12. C. A. Micchelli, On a numerically efficient method for computing multivariate B splines, int "Multivariate Approximation Theory" (W. Schempp and K. Zeller, Eds.). pp. 211-248, Birkhaüser, Basel, 1979.
13. I. J. Schoenberg. On spline functions, in "Inequalities: Proceedings of a Symposium" (O. Shisha, Ed.), pp. 255-291, Academic Press, New York, 1967.
