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I. INTRODUCTIOl\

In 1131. Schoenberg introduced the spline operators

Vk(f: .) = \. f(~i) NC I (j ..... (j. k)
j 1

( 1. I )

which reproduce linear functions and are variation-diminishing. They also
have the shape-preserving properties of Bernstein polynomials to which they
reduce with appropriate choice of knots (tJ The approximation properties of
these operators were further investigated by Marsden and Schoenberg 191
and Marsden 110 I.

More recently C. de Boor II I highlighted the geometric interpretation of
B-splines due to Curry and Schoenberg 131 and extended this to give a
definition of B-splines in higher dimensions. Subsequently C. A. Micchelli
III I and W. Dahmen 151 obtained some analytic properties of these B­
splines together with some recurrence relations. In 141 Dahmen constructed a
class of these B-splines whose linear span contains all polynomials of
appropriate degree.

In this paper we shall use the geometric definition of B-splines to construct
spline approximation operators of type (1.1) in one and two dimensions. In
the case of one dimension we allow different orderings of the knots for the B­
splines in (1.1). The main tool will be a generalisation of an identity of
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Marsden 110 j which we prove in one dimension in Section 2 and in two
dimensions in Section 5. In [4] Dahmen has given a different generalisation
of Marsden's identity and our proof is similar to his, both using elementary
geometrical methods. Our identities differ from Dahmen's in using a
triangulation of a simplex rather than a cube, and producing a single identity
involving 2 parameters (in 2 dimensions) rather than a class of identities
involving a single parameter. These allow us, in the one- and two­
dimensional cases considered, to find simple, explicit formulas for the B~

spline coefficients in the identities.
In Section 3 we study the variation-diminishing property of the operators

in one dimension, while in Sections 4 and 6 we prove convergence results for
the operators in one and two dimensions, respectively. These operators
reduce to Bernstein polynomials when restricted to a triangular domain with
appropriate choice of triangulation, as is shown in Section 7. An important
feature of these spline operators is that they are defined on any polygonal
domain in 1),1 and not restricted to triangles or squares.

2. A GEOMETRIC PROOF OF A GENERALISED MARSDEN's IDENTITY

We first introduce the B-splines defined in III. For °< s ,,:; k. and r5 a k~

simplex in , we define

VxE (2.1 )

where VOid means d-dimensional volume, and p: IP' -> II,' denotes the
projection pv := (Vi)~ I' Then M o is a piecewise polynomial function of
degree ":;k - s with compact support in F'. If r5 has vertices VII, ... , v' and
Xi = pv i

, then it is known 15, II I that M o(x)/vol,r5 depends only on XII ... ., x'
and so we can define the B-spline

VxE II . (2.2)

Now take k > I and let ,1, I denote the standard (k - I )-simplex in
with vertices the standard vectors

, I

i (J; ),-1e := Uij j~ 1 , i = 0,... , k - I. (2.3 )

Let ,1 = 1r5 i } 7 I be a triangulation of 10, II X ,1, _ I ell?' such that each
vertex lies on one of the edges ,Jij = 1(x, ej

): x E 10, I]}, j = 0,... , k - I. For
i = 1,... , n, we denote the vertices of r5 i by v iO

, ... , Vi, and their projection on
the XI-axis by t iO '"'' t i ,. Note that for any simplex r5 i , each edge jj .
.i = 0,.... k - 1, contains at least one of the vertices of r5 i and hence there is
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exactly one such edge containing exactly two vertices of i5 i . We shall denote
these two vertices by viO and V

ik
, where 110 < Ilk-

Now for i = 1,... , n we define a normalised B-spline of degree k - I on

[0, II by

(2.4 )

We wish to calculate vol k i5 1• [I' v 10 and v Ik lie on ' ;--1' then vol k 61 is the

absolute value of

I /,iO U
ll

U
ik

'I I I
~

k!

(' ~o ('il (' ~k
k

\vhich, after reordering l' i 1, ... , U Ilk I) if necessary, equals the absol ute value

of

1iO 1ik {i 1 I·, {Il ( liA I)I.

a a a
I a

k!
I

Thus

(2.5 )

A similar calculation shows that (2.5) also holds when 1,,
0

• V
lk lie on ";:

j =t- 1. Then by (2.2), (2.4), (2.5),

(2.6 )

Thus N i depends only on {iO'"'' lik' and we may write

We have the following generalisation of Marsden's identity,
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THEOREM 2.1. For any y E 1\1 and °~ x ~ I,

" \' I I
(y-x)' 1 = \' III (Y-lij)\ NJx).

i I . i I

251

(2.7)

Proof Take any y> 1 and let Ll~ denote the k-simplex in P' with
vertices (y, eO), (0, ei

), i = 0,... , k - 1. Let P := {(x 1''''' x,) E Llt: °~ x I ~ 1f.
A simple geometric argument shows P = 1Tyv: v E 10, 1] X Ll k _ II, where for
(x,z)E\O,I\XLl k _ l , Ty(x,z)= (x, (y-x)zjy). For i=I,... ,n, let c5r
denote the simplex ITyviO

,... , Tv V
ik I, where ITJ denotes the convex hull of

the set T. Then LlY := lc5if7-1 is a triangulation of P. By a calculation similar
to that for (2.5),

I '1(. I)',. J - u
vol,()~ = -k' (Ii, - liO) I [ --,- .

• J I .\

(2.8 )

Now for each x in [0,11, the hyperplane l(xl,oo.,x,): XI =xf intersects P in
the (k- I)-simplex ax with vertices TJx, ei ), j = 0,... , k - 1. Then

--:--_1----.,.. (·-y--.l-'·'_' )k- 1 = vol
k

_ \ ax
(k - I)!

"
by (2.1)

"
= \ ' vol k c5r M(x I liO"oo, lik)

Ie-: I

by (2.2)

= \' _1----,- \ k.,,=::lll (Y -Y tu ) IN;(x)
;=1 (k-I)! I \

by (2.6), (2.8)

which gives (2.7). I

COROLLARY. For k > 2 and i = 1'00" n leI

I k 1

--- \'
~i - k _ I ~ lu,

,- I

)'(2) = 2 \ '
'0, k k 2 Ii/lim'( - 1)( - ) 0</7;"-,,

Theil for all x in 10, 1I,

"1= \' Ni(x),
; I

(2.9 )

(2.10)

(2.11 )
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'- \'.\ - _ ~/v)x),
, I

"
X

2 = \ ' ~~21 N,(x).
i I

(2.12 )

(2.13 )

Proof In (2.7) equate coefficients of)" i. y' 2. y' '. respectively.

Remark. Suppose a= t I = = t, < t, + I ~ '" ~ t" < tIl . I = ... =

t" , , = I, and for i = L. ... n, t, = = t i ' i -"> j < k. Then the following
triangulation L1 gives rise to the usual B-splines of Curry and Schoenberg [31
and the usual Marsden's identity 110 I:

61 = IUI,eO
). (t 2,e i

), •• ., (t"e' i). (tl l,.eil)l.

. I I' O· I I6,= (t2,e ).(t1 .e·)..... (t 1ik .e ),(12ik.e),

where 1== n - 1 (mod k).
We shall refer to this triangulation as the usual triangulation. In this case

the normalised B-splines are

i= I,.. .,n.

3. THE VARIATION-DIMINISHING PROPERTY OF

BERNSTEIN-SCHOENBERG OPERATORS

For k > 1 define a triangulation L1 = ~ (j, f;' I as in Section 2 and for
i = I..... n, define N,. ~i as in (2.6), (2.9). Then we define the following spline
operator Vel. which we call a Bernstein-Schoenberg operator.

For any functionfon 10. II,

, 1

VxE 10. II· (3.1 )

If L1 is the usual triangulation, Vel reduces to the operator V, of
Schoenberg (1.1). Clearly Vel is a positive linear operator. It follows from
(2.11) and (2.12) that Vel reproduces polynomials of degree I.

An important property of the operators V, is that they are variation
diminishing. i.e., for any J.

(3.2)

where S denotes the number of strong sign changes in 10. I I, see 12. 13 I·
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For a general triangulation ,1, the operator V.1 need not be variation­
diminishing as the following example shows. Let k = 2 and define ,1 == 16 i f ~_ ]

by

6]=1(0,0), (O,I),(LO)I,

62 = I(0, I), (t, 0), (~' I) I,
63 = I(LO),(~, 1),(1,0)1,

64 = [( ~' I), ( I , 0), (I, I) I·

If/ is any function with S (/)= l./(O)=/W= I,/(t)=/(I)=-l,
then it is easily seen that S (V.1(/)) = 3.

However we do have the following result.

THEOREM 3.1. Let ,1 = 16 i f;' ] be a triangulation 0/ 10, I[ X,1kl

satis/ring

tU:::;;t ik , }= O, ... ,k, i = I,... , n, (3.3 )

or

liO:::;;lu' }=O,... , k, i = I,... , n. (3.4 )

Then V.1 is variation-diminishing.

We note that this includes the case Vk because ,1 is the usual triangulation
if and only if

}= O, ... ,k, i = 1,..., n.

The proof of Theorem 3.1 requires some subsidiary results and first we
order the simplices of ,1 as follows (without yet imposing conditions (3.3) or
(3.4)). Let 6 1 be the unique simplex containing the (k-I)-face 10} X,1 k _ l •

There is then a unique simplex having a common (k - 1)-face with 6] and
this simplex is denoted by 6 2 , Continuing in this manner, suppose for some
I < i < n we have defined 6 1 ,,,,, 6 i so that for) = 1,... , i-I, 6i and 6i + 1 have
a common (k - I )-face. Then there are precisely two simplices having a
common (k - I )-face with 6 i . One of these is 6 i 1 and the other we: denote
by (51 +I' This gives a unique ordering of ,1 and 6n is the unique simplex
containing the (k - 1)-face 11 f X ,1 k I'

Throughout the rest of this section we assume L1 has this ordering. We
note that for i = 2,... , 11, 6 i contains precisely one vertex, namely, Uik' not
contained in any 6i , ) < i. Thus the total number of vertices is
(k + 1) + (n - I) = n + k. We denote the projections of these vertices on
10,11 by t={td;'~t, where 11:::;;12:::;; .. ·:::;;ln+k· Clearly tl= .. ·""tk=O,
tnt] = ... = tn+k = 1 and if for any i, t i = ... = liti' then} < k. The usual B-
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splines M(· It i , ... , t itk ), i = 1,... ,11, thus form a basis for the space j (t) of all
splines on 10,11 with knots in t. Hence the B-splines N, ,... , Nn form a basis
for/(t) if and only if they are linearly independently. They are not linearly
independent in general as is seen by the following example.

Let k = 2 and define ,1 = 16di 1 by

()I = 1(0,0), (0, I), (1,0)1,

()2= 10,0),(0, 1).(1,0)1,

63 = l(O, I), (1,0), (1, 1)1,

15 4 = I(~, I). ( I, 0), (I, I) I.

Then, clearly N 2 = N j •

However, we do have the following result.

PROPOSITION 3.1. Suppose the triangulation ,1 is such that all vertices
projected onto the same point on lO, 11 lie in a common simplex in ,1. Then
N) ,... , N n are linearly independent.

Proof For i = I,... , n we shall prove by induction that N) , , IV i are
linearly independent. Suppose then that for some 1 < i ~ n, N I' N i \ are
linearly independent. Let S denote the set of vertices of 6) , ,15, whose
projections on 10, 1I equal tik' By assumption S comprises vertices of a
common simplex, say, 6j • We cannot have j < i since vik E S and vik E 6j for
j < i. But if any element of S lies in 0i for j > i, then it also lies in 6 i, by the
nature of the ordering of Ll. Thus S must comprise vertices of 15 i .

Let r denote the cardinality of S and suppose that for some numbers
AI ..... Ai , I:= AINI+,,·AiNi=O. Then O=I" rl(tik)-lk r)(tid=
)'i~N:k-/I(ti:)~N~k r)(tik)~andhenceAi=O.SOAINI+,,·+Ai,Ni )=0
and since N" ... ,Ni I are linearly independent, AI='''=A i ,=0. Thus
N 1 ..... N i are linearly independent and the inductive step is complete. I

COROLLARY. II Ll satisfies (3.3) or (3.4), then N" ... ,NfI are linear~r

independent.

Proof First note that for i = 1,... ,11 1 the (k ~. 1)-face in common to (ii

and 0i' , is given by jv i ( j = 1.. .., k f and IVi"'lj: j = 0,... , k .- If. We now
suppose j satisfies (3.3) (the case (3.4) following similarly) and note that
(3.3) is equivalent to the condition t" ~ t 2k ~ ... ~ tnk'

Let S denote a set of vertices having the same projection on 10, 1 I. We
have to show the elements of S lie in a common simplex. If the projection is
0, then clearly Sco,. Otherwise S is of the form jv ik : a~i~f3f for some
I ~ a ~ Ii ~ n. We shall show by induction on j that for a ~ j ~ {J, (L' ik :

(1 ~ i ~ jf c:: ();. This is trivially true for.i = a. Suppose it is true for some j.
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a ::;; j < (1. Then every element of {v ik : a ::;; i ::;; j f is of the form vjl for some I.
and since the projection of vii on 10, 1) is t ik > till' we must have I> 0, and
hence vj{EOj + l • So jv ik : a::;;i::;;j::;;j+ IfCOjtl and by induction
S=l v ik: a ::;;i::;;(1f c0!J' I

Henceforth in this section we assume Ll satisfies (3.3) or (3.4). We will
prove the results for case (3.3), case (3.4) following similarly.

LEMMA 3.1. For any p, q with 1 ::;; p::;; p + q - I ::;; n, and for any points
'I < ... < rq in 10,11, det(Np _ 1+ ;(rJ),f. j I) 0.

Proof The proof is by induction on q and follows the ideas of de Boor
[21. Clearly the result is true for q = 1. Take 1 < r::;; n and suppose it is true
for q = r ~ 1. Now choose any p with 1::;; p ::;; p + r - 1 ::;; n and points
'I < ... < rr in [0,11· We must show det(N p I +;(r;)r. i I) 0.

By an earlier argument we know 01', ... ,01' f r _I have a total of r + k distinct
vertices. Denote the projections of these vertices on 10, 1) by s = 1s, f ~ • ~ •

where SI::;;"'::;; Srtk' and let/(s) denote the space spanned by M,:=
M(· Is, ,.... S, +k)' i = 1,... , r. By the corollary to Proposition 3.1.
Np ..... N". r 1 are linearly independent and so form a basis for "/ (s). It is
well-known (see 11 J) that det(M,(rJ);,j 1 *° iff SI < r l < SI. k' i == 1..... r.
We may assume det(N" I ti(rJr.j 1 *° and hence that SI < r, < SI d'

1= I, ...J. It follows that det(M;(r;)r./ 1 *°and since N",... , N" \I 2 span
the same space as M 1 ..... M r l' we have by the induction hypothesis,

det(N" I t ;(ri))~./ 1 > 0.
Now for x in 10, I) define f(x)=det(N" 1+,(IJr. j I' where Ii=ri ,

j = 1.... , r - 1. and Ir = x. Thenf is a linear combination of Np .... , N p +r l' If
sr+k has multiplicity a in s, then N~k+-r"-)l(S;+k)*°and N~k-al(sr-+k)= °for
p::;; i < p + r - I. Thus in (sr t, ~ G. Srtk) for small enough /; > 0. f is
dominated by the term involving N p +r- 1 and so for x in (Sr' k ~ E, Sr , ,),f(x)
has the same sign as the coefficient of N". r I' namely.
det(N" I +/(rjm./ I > 0. But f(x) cannot vanish or change sign for x in
[rr. Srl') and sof(rr) > 0. i.e., det(Np I t ;(rj))~.j 1 > 0. I

LEMMA 3.2. For any points r I < ... < r" in 10. 11. the matrix
N ,(ri )I! 7. j I is totally positive.

Proof This follows from Lemma 3.1 by applying the method of Karlin
!6.p.528j.

Proof of Theorem 3.1. It follows easily from (3.3) or (3.4) that
~ 1 ::;; ~2 ::;; ... ::;; ~n' But it is known [6 J that for any totally positive matrix A
and any vector x (of appropriate length), the vector Ax has no more sign
changes than does x. The result then follows immediately from
Lemma 3.2. I
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4. CONVERGENCE OF BERNSTEIN-SCHOENBERG OPERATORS

In this section we assume k > 2. In II°I Marsden showed that Vk(f; .) -t f
uniformly on 10. II for all f in CIO. I[ if k -I(max Lll;) -t 0. We now
generalise this result to the operators Vcj'

THEOREM 4.1. For every f in qO. 1[. Vcj(f: .) --> f uniformly on 10. I[ if
(1/k)max i ; /1 dj-t 0. where d;=maxjlij-minjlij.

Proof Define g in C I0. I I by g(x) = X 2. Since V", is a positive linear
operator which reproduces polynomials of degree I, it follows from the
Bohman-Korovkin Theorem (see 17 J) that V", (f; .) -t f uniformly on 10, II
for allfin qO. II if Vcj(g: .)-t g uniformly on 10. II.

Now from (3.1) and (2.13) we have

/1

Vcj(g;x)- g(x) = \' (~7-~l2»NJx).
j 1

A straightforward calculation shows that for i = I, .... n.

2 ;:(2) I \ ' ,
~; -c,; = (k-I)2(k-2) J).l<md (lim-til)'

and thus °~ ~7 - ~~2) ~ d;12(k - I).
So by (4.1) and (2.11) we have

(4.1 )

I ,°~ Vcj(g; x) - g(x) ~ 2(k ) max dj,- I 1<1</1
lix E 10, II·

Hence V",(g; .) -t g uniformly on 10. II if Ilk maxI i n d j -t 0. I

Defining l = jt j ~ ;1' Ik as in Section 3, the conclusion of Theorem 4.1 need
not be valid if we merely assume k I(maxjLll j) -t 0. As a counterexample let

k = 3 and take any points °= II = t 2 = t) < l4 < '" < t /1 • 1= t /1 j 2 = l /1' .1 = I.
Define L1 = {od7 1 by

0;= l(lj.2,0.0).(t l .I,0),(t 2 .O.I),(t;.).0,0)j,

i= I..... n -- 2.

0/1 1= l(ti' 1,0). (l2' 0. I). (tn+ l' 0, 0). (til t 2' 1.0)1.

0/1 = l(t 2• 0. I). (tnJ 1.0,0), (lIlI)' 1,0), (t/1" .1. 0.1)[.

Then ~; = 0, i = I, 2,... , n - 2, ~/1- I = 1, ~II = I. and it is easy to see that
for g(x) = x 2

• V",(g; .) -ft g on [0, II as max Lll; -t 0.
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5. Two-DIMENSIONAL MARSDEN'S IDENTITY
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For k > 2 let Q denote a polygon in IR 2 and L1 k _ 2 the standard (k - 2)­
simplex in ,rpk2 with vertices eO, ... , e

k
-

2 as in (2.3). Let L1 = jc5d7 I be a
triangulation of Q X L1 k _ 2 c IR k such that each vertex lies on one of the faces
7) = j(x, eJ ): x E Q},) = 0,... , k - 2. For i = 1,... , n we write c5 i = [v iO

.... , V
ik I

as before and denote the projection of vii on Q by xii = (x;;, x~).

Now for any simplex c5;. each face ,7).) = 0,... , k - 2, contains at least one
of the vertices of c5 i and hence there are two possibilities.

(i) There is one face containing three vertices of (Ji' In this case we
denote these vertices by L' iO, Vii, V i2.

(ii) There are two faces, each containing exactly two vertices of c5 i ' In
this case we denote those on one face by v iO, Vi I and those on the other face
by V

i2
, V

i3
.

Now for i = 1.... , n we define a normalised B-spline of degree k -- 2 on Q
by

N i := (k - 2)! M 8j •

By a calculation similar to that for (2.5), we find the following.

In case (i), volk c5 i = Idet(x il - x ill
X

i2
- xiO)I/kL

In case (ii), volk r5 i = 1det(x i1 - x iO
X

i3
- X

i2 )I/kL

Thus by (5.1) and (2.2) we have the following.

In case (i),

(5. I)

N = 1 1det(xil - x ill
X

i2
- xiO)1 M(· Ix iO

X
ik

) (5.2)
i k(k-l) ,... , .

In case (ii),

N, = 1 1det(x il _ x iO
X

i3
- x i2 )1 M(· 1x iO

X
ik

) (5.3)
I k(k-l) ,..., .

Now for i = 1,..., n,) = 3,... , k, we define zii in ~~2 as follows. If case (ii)
holds for (Ji' then zi3 is the point of intersection of the line XiOX

il and the line
X

i2 x iJ
• (These lines cannot be parallel or (J i would be degenerate.) In all other

cases zU = xu. Then we have the following two-dimensional version of
Marsden's identity.

(,40:33 :3(,
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THEOREM 5.1. For any Y E IH 2 and x E Q,

n k '

(YI Y2 - hXt ~ Yt X 2)k-2 = i\ 'I )JI, (YI h - hZY - YIZV)( Ni(x). (5.4)

Proof Without loss of generality we may assume Q c ~x E IH 2:
XI' X 2 ~ Of· For YI' Y ~ I we let Llk denote the k-simplex in H k with vertices
(YI,O,eO), (0'Y2,eO), (O,O,e i

), i=0,... ,k-2. For large enough YI'Y2,Lli
contains QX ~eof and we let P:= {(xl,oo.,xk)ELli: (x l ,x2)E Q f. A simple

geometric argument shows that P = ~ Tv v: v E Q X Ll k 2 f, where for

(x,z)EQXLl k 2'

(
' (' XI X 2 ') )T,,(x, z) = X, 1 - - - -, z, ., .vI Y2

If 6r denotes the simplex IT" ciO
, ... , T" l,ik I. i = L .., 11. then for large

enough )'1' Y2' Ll" := ~6n7 t' is a triangulation of P.
Now for i = I,..., n,

Vi' denote the vertex of 6iFirst suppose 6i satisfies (i). If c iO ric ~)' let
lying in ' ~)' A simplification of (5.5) then gives

vol, Jr . :, de' C::, ::: II au'
~ ~:,:.i < k.
;/ f

(5.5 )

(5.6 )

where au = 1 - xii/v I - xii!.v!.
By manipulating the rows of the determinant in (5.6) we get

. I I x
iO

vol. ()\ = - det (
k I k! , I

(5.7)

If c jO E J'~), then a simpler calculation also gives (5.7).
Next suppose 6j satisfies (ii). If v/o, v n ric ~, then as before let v i

/ denote
the vertex of 6i lying in ~)' A simplification of (5.5) then gives

C'
Xii X

i2 Xi)

n., I

del '::"

ail 0 0 I [vol 0,' =- au
k 1 k! 0 a" a i .\ 4<,j<,k/.

I
j",1
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and a manipulation of rows gives
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'ol,s: ~ :! dot (:;: ::: X~' x~') !\ "u (5.8)

Now recall that ZI.1 is the point of intersection of the line XIOX II with the
line X

l2
X

l.1 and so

. (X
IO

X
l2

X
iJ

) . (XiI X
l2

XiJ
)

X'I det - x 'O det
1 1 1 1 1 1

ziJ= (59)
det(x il - x iO x iJ _ x i2 ) •

Then expanding the determinant in (5.8) by its third row and applying
(5.9) gives

1 . .. . ( Z \.1 Z ~.1) k
VOlk(jY=-det(xll-x'O x '.1 _X

I2
) 1----- f"l a. (5.10)

1 k! Yl Y2 j~4 l}

If vlO E,~ or V
l2 E,~, a simpler calculation also gives (5.10).

Now for each x in n, the hyperplane {(x I"'" x k ): (x I' x 2 ) = x} intersects P
in the (k - 2)-simplex ax with vertices Ty(x, f!), j = 0,... , k - 2. Then

n
\-= _ Mo;(x)

i I

by (2.1)

n

- \' I" y M( I 10 ik)- _ vo k U i X X , .•. , X

i I

for (2.2)

= \'- ----=--I~ \(f (I-:~- z:;) I NI(x)
I I (k - 2)! L .1 .h .1'2 \

by (5.2), (5.3), (5.7), (5.10)

which gives (5.4). I

COROLLARY. For k > 3 and i = 1,... , n, let

__I_~- II
~ij - k - 2 - Zj ,

I .1

(2) 2
~u = (k-2)(k-3)

(2) I
~I = (k-2)(k-3)

j == 1,2,

J~/<::m k

\ - z'/ Z~m
3 l-t:rn<k

j = 1,2,

(5.11 )

(5.12 )

(5.13 )
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Then for all x in Q,
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It

- '\' .I - _ N;(.x),
j 1

(5.14 )

II

. - '\'.x j - _ ~uNJx),

i 1

II

,2 = '\' )'(2) N.(x)·
.. I _ Sf} I ~

i I

II

v ,. - '\' )'( 2I N (v)-"\"/\'2- _ Si i A..

i 1

j= 1,2,

j = 1,2,

(5.15 )

(5.16)

(5.17)

Proof In (5.4) equate coetTicients ofy~ 2y~

y~4y~ 2,y~ 2y~ 4,y~ 1y ; \ respectively. I

6. Two-DIMENSIONAL BERNSTEIN-SCHOENBERG OPERATORS

As in Section 5 we take a polygon Q and for k > 2 define a triangulation

J = ~bif;' I' For i = 1,... , n define N i by (5.2), (5.3) and ~i = (~il' ~i2) where
~i I ' ~i2 are defined by (5.11). Then we define the Bernstein-Schoenberg
operator V.1 as follows.

For any function f on Q,

II

V,,(f; x) = '\ ' frO Ni(x),
i I

VxEQ. (6.1 )

Clearly V.1 is a positive linear operator. It follows from (5.14) and (5.15)
that V.1 reproduces polynomials of degree 1. We now assume k > 3 and give
a two-dimensional version of Theorem 4.1.

THEOREM 6.1. Suppose that for each triangulation J and for each
simplex 6 i E J satisfying (ii) of Section 5, the line x iO

Xii and the line Xi2 x j1

intersect in supp N i . Then for every f E C(Q), V" (J: . ) --"> f uniformly on Q if
(Ilk) maxl>;.;>;.n dj--">O, where dj=diam(suppN;).

Proof By the Bohman-Korovkin Theorem, it is sutTicient to show that
V.1(J; ·)-->f uniformly on Q for f= gl' g2 and h, where gl(x)=xi,
g2(X)=X~ and h(x)=x 1x 2.

Now from (6.1) and (5.16) we have forj= 1,2

II

V ( .) - () - '\' ("2 _ )'(2)) N ( ).1 gj' X gi X - _ r:;,u "'u i X .
i I

(6.2)
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A straightforward calculation shows that for i = 1,... , n,

¢2 ¢(2) 1 '\' (z;m-zYf
u- u = (k-2)2(k-3) 3"i<msk

and thus °~ ¢J - ~jP ~ df!2(k - 2).
So by (6.2) and (5.14) we have
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VxEQ.

Also from (6.1) and (5.17) we have

11

Vt\(h; x) - h(x) = '\' (~il ¢i2 - ~~2» Ni(x).
i I

Now a straightforward calculation shows that for i = 1,... , n,

1 11

;:;: ;:(2) ---C--~-'--. \' Zil(Zii _ zim)
'oil Si2 - Si = (k _ 2)2(k __ 3) 1,;;- 3 I 2 2

and thus 1~i1 ~i2 - ~;2) I~ Kd;/(k - 2), where K depends only on Q.

So by (6.3) and (5.14) we have

K
IVt\(h;x)-h(x)I~-- max di .

k - 2 I i<"

Hence Vt\(h; ·)--+h uniformly on Q if (I/k) maxl<i<lIdi--+ 0. I

7. BERNSTEIN POLYNOMIALS

(6.3 )

Let XO = (0,0), Xl = (1,0), x 2 = (0, 1) and Q be the triangle [XO, x I, x 2
].

For k > 2 we define a triangulation

t1=16u:i,j?-0,i+j~k-2f ofQXt1 k 2by

6ij= [(I,O,eO), (I,O,e l
),... , (I,O,e i

), (0, I,e i
),

(0,1, ei + I),..., (0,1, e it
/), (0,0, e it

/), (0,0, eit /+ I),

... , (0,0, ek
-

2 )J.

By (5.2) and (5.3), the normalised B-spline corresponding to the simplex
(lu is given by

1 0 0 I I 2 2N·= M(·!x,... ,x,x,...,x,x,...,x). (7.1)
1) k(k - 1) _~__ _v_ ___

k--I-i j i+1 i+1
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Now it follows from a formula of Micchelli (Corollary 2 of 1121) that

k 1 i j I, I j! 1

i i (7.2)

So by (7.1), (7.2) and (6.1), the Bernstein-Schoenberg operator is given
by

Vc1 (f;x) = \'

>0
k 2

f (~i,~j .) ( k ~ 2 ) ( k - ~ - i)
k-2 k-2 I.. }

(7.3 )

and therefore comprises Bernstein polynomials (see 181).
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